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Time-frequency analysis techniques are used to produce a plot of a signal’s power
spectrum as a function of time. The most well-known time-frequency representation is
the spectrogram. Although relatively simple to compute, it suffers from having a
significant limitation in that it cannot offer good time or frequency resolution
simultaneously. To overcome this weakness, many other representations have been
developed that provide combined high resolution over time and frequency. The Wigner-
Ville distribution, the scalogram, and the discrete Gabor transform are among the most
well-known of these methods. Due to specific shortcomings with regard to these
distributions for multi-component signals, and for certain mathematical concerns such as
shift invariance and time and frequency marginal conditions, several classes of
representations have been developed which effectively address specific signal types.
Examples of these categories are Cohen’s class, the affine class, and the signal adaptive
expansions based upon the Matching Pursuit method. The goals of any of these specific
methods are to minimize cross-term interference, provide good time and frequency
resolution, and provide a good model for the signal of interest.

In the past, time-frequency analysis techniques have seen limited use on high-
sample rate data streams. Although these methods are effective at capturing the evolution
of the instantaneous frequency of non-stationary, transient and time-varying signals, the
associated computational complexity has been high. As such, the application of such
methods has been limited to analysis of relatively low-frequency phenomena. Examples
of the types of applications generally include acoustic signals, underwater mammalian
and other biological signal analysis, electro encephalograph (EEG) potentials, sonar and
underwater acoustics, seismic monitoring, and fault detection and analysis of rotating
machinery.

By porting these time-frequency algorithms onto a multicomputer, it becomes
possible to accommodate wide-band, high-sample rate data streams. The benefit is that
highly dynamic and transient phenomena within the radio spectrum can be detected,
measured and identified. Several types of applications now become amenable to detailed
time-frequency analysis. Examples might be spectrum compliance monitoring, modeling
of time-varying channels for multiple access spread spectrum, detection of exotic
waveforms buried in noise, transient signal detection, classification of signal modulation
types, improved source direction of arrival (DOA) estimation performance through
spatial time-frequency analysis, and interference and jammer excision.
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A multicomputer-based solution is an ideal fit to handle the large processing
requirement associated with high-sample rates and high-computational complexity. The
processing load can be distributed across multiple compute nodes and the data sets can be
constructed to ensure efficient movement of data among the nodes. The system can be
easily scaled and reconfigured to serve changing analysis requirements.

Mercury has developed a demonstration multicomputer system implementing a
selection of these high-performance time-frequency analysis algorithms running in real
time. The system is based on PowerPC® G4 processor with AltiVec™ technology
interconnected by the RACE++® high-bandwidth switch fabric architecture. A set of
powerful software tools has been utilized to implement several of these algorithms. Using
MATLAB® as a starting point, the total development time to port these algorithms onto
the multicomputer was quite reasonable. The demonstration, rather than including a short
snippet of an interesting signal as seen in most of the literature, processes longer duration
waveforms from actual radio equipment.
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Project DescriptionProject Description
Implementation/Demonstration Goals

Choose a selection of compute-intensive signal processing algorithms 
for demonstration on a real-time multicomputer system
Some algorithms address problems in signal intercept or 
passive/active radar applications
Follow progress of an interesting series of works performed at Naval 
Postgraduate School [2] (under Prof M. Fargues and former Prof R. 
Hippenstiel); also follow Time-Frequency toolbox [6].
• Spectral Correlation Receiver based upon FFT Accumulation Method
• Continuous Wavelet Transform (Scalogram)
• Discrete Wigner-Ville Distribution with a selected set of interference-

reducing kernels
• Parallel Filter Bank and Higher Order Statistics detection

-- Third order cumulant detector/estimator
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Project Description Project Description 

Demonstration System

Common thread with all algorithms is a high-computational load 
distributed over multiple nodes to achieve real-time performance.
Generally, a demonstration of these techniques runs on a single 
processor system and involves a fixed signal segment and a waiting 
period before presentation of results.
Our contribution is to show these algorithms running in a “dynamic 
spectrum analyzer” mode with streaming input signal data.
Near real-time graphic software written to display mesh and image plots. 
In addition, goal is to produce real-time contour plots.
Show ease of implementation of using scientific algorithm library (SAL) 
library calls.
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Time Frequency Representation (TFR) OverviewTime Frequency Representation (TFR) Overview

TFRs are powerful tools to analyze, characterize, and classify dynamic 
signals existing in non-stationary conditions.
Certain characteristics such as high resolution measurement of the 
instantaneous frequency and energy of a signal across time are 
appealing to practitioners across a wide range of science and 
engineering disciplines.
Unfortunately the holy grail of high resolution and co-existence of 
multiple signals and multiple signal components remains elusive.
An enormous amount of research focus has gone into obtaining the
desirable mathematical properties of the Wigner-Ville Distribution 
without its accompanying distortion properties for the above 
conditions.
Variety of algorithms, kernels, representations, etc. available.
Many approaches involve high levels of computation, especially the 
fixes overlaid to overcome deficiencies of a particular technique.
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Spectral Correlation Spectral Correlation 

FFT Accumulation Method [4,5]

8 x 65536
correlation
arraycross-correlate

all 256 filters

256 pt FFT
filter bank

8 sub-blocks

{ x0, x1, x2,…, x4095 }

4096 pt complex 
sample vector

256 filters wide
8 sample deep reorder by 

cycle 
frequency
vs. 
frequency

256x1024
ROS
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Scalogram (CWT) Scalogram (CWT) 

As freq = 0.05 to 0.5, “a” scales from 10 to 1
Wavelet basis is Mexican Hat function
As a scales, the filter size scales logarithmically from 2263 to 47 pts
Convolve with signal using either 4K, 2K, 1K, or 512 pt FFT

Mexican Hat
wavelet

{ x0, x1, x2,…, x511 }

Sequences of 512 
pt complex 
sample vectors

2K zero 
padded 
FFT

1K zero 
padded 
FFT

1K FFT

“a” big

2K FFT

4K FFT

“a” medium
“a” small

IFFT

512 pt waterfall scalogram

4K zero 
padded 
FFT

Continuous Wavelet Transform using fast convolution [6]
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Wigner-Ville DistributionWigner-Ville Distribution
Wigner-Ville Distribution [7]

Computed at input sample rate which drives complexity 
requirement
Best time-frequency resolution for estimating frequencies, 
chirp or drift rates, event times
ICF function generates interference which limits usability
Satisfies many mathematical properties including energy, 
time and frequency marginals, instantaneous frequency 
and group delay

{ x0, x1, x2,…, x511 }

Sequences of 512 
pt real or complex 
sample vector

Instantaneous 
correlation 
function

Hilbert 
Transform 
(if x real)

512 pt FFT

512 pt Waterfall WVD display 
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Smoothed Pseudo Wigner-Ville DistributioSmoothed Pseudo Wigner-Ville Distribution

One of many interference reduction strategies applied to WVD
Time window the input sequence to suppress cross term interference.  
Little effect upon computation.
Window in the frequency domain (convolve in time domain) which adds a 
significant amount to the computational complexity.
Net effect is loss of resolution in time and frequency for suppression of 
interference. 
Sample rate reduction possible due to bandwidth reduction by filtering.

{ x0, x1, x2,…, x511 }

Sequences of 512 
pt real or complex 
sample vector

Instantaneous 
correlation 
function

Hilbert 
Transform 
(if x real)

512 pt FFT

512 pt Waterfall Smoothed Pseudo WVD 

Convolve w/ 
freq. mult 
by time 
window
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Filterbank Spectrum with Cumulant Noise SuppressionFilterbank Spectrum with Cumulant Noise Suppression

Time Frequency Detection Technique for Transients in Unknown Noise
Purpose is to demonstrate use of cumulant calculation in a real-time signal processing 
application.
Follows work of [4]Satter,F. and Salomonsson,G. “On Detection Using Filter Banks and 
Higher Order Statistics,” IEEE Trans. AES, Vol. 36, No. 4, Oct. 2000.  Also see Taboada’s
report [5]. 
Computational complexity, although relatively high, is reduced by using cumulant slices 
along diagonal.
Based upon difference between (0,0) lag and diagonal along (-1,1) lag.
Suboptimal for detection of transient low SNR signals in colored noise.
Sattar, et al., derives expression of detector in terms of Teager-Kaiser energy operator and 
3rd harmonic suppression.

{ x0, x1, x2,…, x511 }

Sequences of 512 
pt real or complex 
sample vector

512 pt 
complex filter 
bank

Hilbert 
Transform 
(if x real)

512 pt waterfall filterbank with
cumulant processing

pre-filter           post-filter

Compute

where
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Demonstration AlgorithmsDemonstration Algorithms
Unifying Fourier Transform relationships between 

demonstration algorithms

Ambiguity
Function

Spectral 
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Distribution
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See [1] and [8]
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Time-Frequency AlgorithmsTime-Frequency Algorithms
Several (non-exclusive) categorizations of T-F algorithms

Algorithm:

Representation / Atomic Decomposition:
Orthogonal basis functions
Non-orthogonal elementary functions

Invariance property:
Time/frequency shift (Cohen’s) -> kernel type
Time/scale (affine)

Order:
Linear
Quadratic
Hyperbolic
Power

Signal dependence:
Signal independent
Signal adaptive

Spectrogram
Multi-windowed spectrogram
Gabor representation
Scalogram (CWT)
Discrete Wavelet Transform
Wigner-Ville Distribution
Pseudo Wigner-Ville 
Distribution
Smoothed Pseudo Wigner-Ville
Choi-Williams
Cone-shaped
Rihaczek
Margeneau-Hill
Page
Born-Jordan
Reassignment techniques
I/0 kernel
Radially Gaussian Kernel
Adaptive Gabor Expansion
Adaptive chirplet
Decomposition
Matching Pursuit
Basis Pursuit

Mathematical Interpretation:
Physical: Complex exponentials as eigenfunction solutions
Statistical: no structural assumptions; “dictionary of tiled 
wavelets”
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Qualifications on Performance DataQualifications on Performance Data

No attempt was made to lower sample rate on smoothed pseudo 
Wigner-Ville Distribution as made possible by filtering operations.
No attempt has been made to optimize performance with respect to
algorithmic breakdown beyond a top level.
Example: WVD should be real, therefore could compute 2 FFT at once 
using odd and even input symmetries.
No attempt has been made at optimizing performance with respect to 
machine and system architecture, i.e., stripmining.
Example: Segment data blocks in consideration of processor L1 cache 
size to achieve fast throughput. Re-use of most recently used data 
segments.
Display update rate limited by trying to get 512 KByte images through 
Ethernet pipe and router.
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Single Processor MeasurementsSingle Processor Measurements

WVD: 29 msec per 512 samples
PWVD: 29 msec per 512 samples
SPWVD: 650 msec per 512 samples
Spectral Correlation: 33 msec for block of 4096 samples
HOS filter bank: 732 msec for block of 512 samples
Scalogram:  102 msec for block of 512 samples

Exercise:
As hypothetical example, using 64 kHz sample rate, 512 samples are collected 
in 8 milliseconds, 4096 samples are collected in 64 milliseconds.

Algorithm Number processors
Spectral correlation         1
WVD                                  5
Scalogram 12
SPWVD                         
HOS filterbank large
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Lab Development SystemLab Development System

1X Force CPU50, 333MHz 
SPARC
6x Mercury, MCJ6 with 4x 
G4 7400@400MHz, with 
64Mbyte RAM each
Total of 76 Gflops peak 
processing
Total of 152Gops peak 
16Bit
Dual RACE++
Total bisection bandwidth 
of 1 Gbyte/sec
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Demo System ConfigurationDemo System Configuration

Host Processor

Data Files
PAS™ over VME

Ethernet 

Mercury Compute Nodes

CN CN CN…
PAS™ over RACE++™

Graphical Display PC

(Linux / Windows)

Software Tools Used

Mercury SAL™ (Scientific Application Library)

Mercury PAS™ (Parallel Acceleration System)

SDML (Simple Direct Media Layer)

SGE (SDML Graphics Extension)

SDL Draw

512x512 image
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Project DescriptionProject Description
Implementation/Demonstration Goals

Choose a selection of compute-intensive signal processing 
algorithms for demonstration on a real-time multicomputer
system
Some algorithms address problems in signal intercept or 
passive/active radar applications
Follow progress of an interesting series of works performed at 
Naval Postgraduate School [2] (under Prof M. Fargues and 
former Prof R. Hippenstiel); also follow Time-Frequency toolbox 
[6].
• Spectral Correlation Receiver based upon FFT Accumulation Method
• Continuous Wavelet Transform (Scalogram)
• Discrete Wigner-Ville Distribution with a selected set of interference-

reducing kernels
• Parallel Filter Bank and Higher Order Statistics detection

-- Third order cumulant detector/estimator
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Time Frequency Representation (TFR) OverviewTime Frequency Representation (TFR) Overview

TFRs are powerful tools to analyze, characterize, and classify dynamic 
signals existing in non-stationary conditions.
Certain characteristics such as high resolution measurement of the 
instantaneous frequency and energy of a signal across time are 
appealing to practitioners across a wide range of science and 
engineering disciplines.
Unfortunately the holy grail of high resolution and co-existence of 
multiple signals and multiple signal components remains elusive.
An enormous amount of research focus has gone into obtaining the
desirable mathematical properties of the Wigner-Ville Distribution 
without its accompanying distortion properties for the above 
conditions.
Variety of algorithms, kernels, representations, etc. available.
Many approaches involve high levels of computation, especially the 
fixes overlaid to overcome deficiencies of a particular technique.
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“Waterfall Displays”“Waterfall Displays”

Spectral Correlation CWT Scalogram

Smoothed Pseudo Wigner-
Ville Distribution

Filter Bank with Cumulant
Noise Suppression
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